Statistical convergence on probalistic normed spaces

نویسنده

  • Sevda Karakus
چکیده

In this paper we define concepts of statistical convergence and statistical Cauchy on probabilistic normed spaces. Then we give a useful characterization for statistically convergent sequences. Furthermore, we display an example such that our method of convergence is stronger than the usual convergence on probabilistic normed spaces. We also introduce statistical limit points, statistical cluster points on probabilistic normed spaces and then we give the relations between these and limit points of sequence on probabilistic normed spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical uniform convergence in $2$-normed spaces

 The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences  in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover,  we define the conce...

متن کامل

On Asymptotically Lacunary Statistical Equivalent Sequences in Probalistic Normed Space

Marouf (1993) presented definitions for asymptotically equivalent sequences and asymptotic regular matrices. Patterson (2003), extended those concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for non-negative sum ability matrices. In Patterson and Savas (2006) extended the definitions presented in (Patterson, 2003) to l...

متن کامل

Research Article Statistical Convergence of Double Sequences on Probabilistic Normed Spaces

The concept of statistical convergence was presented by Steinhaus in 1951. This concept was extended to the double sequences by Mursaleen and Edely in 2003. Karakus has recently introduced the concept of statistical convergence of ordinary (single) sequence on probabilistic normed spaces. In this paper, we define statistical analogues of convergence and Cauchy for double sequences on probabilis...

متن کامل

Statistical Convergence of Double Sequences on Probabilistic Normed Spaces

The concept of statistical convergence was presented by Steinhaus in 1951. This concept was extended to the double sequences by Mursaleen and Edely in 2003. Karakus has recently introduced the concept of statistical convergence of ordinary (single) sequence on probabilistic normed spaces. In this paper, we define statistical analogues of convergence and Cauchy for double sequences on probabilis...

متن کامل

Lacunary generalized difference statistical convergence in random 2-normed spaces

Recently in [22], Mursaleen introduced the concept of statistical convergence in random 2-normed spaces. In this paper, we define and study the notion of lacunary ∆-statistical convergence and lacunary ∆-statistical Cauchy sequences in random 2-normed spaces using lacunary density and prove some interesting theorems. Subjclass [2000] : Primary 40A05; Secondary 46A70, 40A99, 46A99.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007